If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-58=0
a = 2; b = 5; c = -58;
Δ = b2-4ac
Δ = 52-4·2·(-58)
Δ = 489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{489}}{2*2}=\frac{-5-\sqrt{489}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{489}}{2*2}=\frac{-5+\sqrt{489}}{4} $
| 1/3x-4/5=2/5 | | 4+4x=6x-2 | | -(m+10)=-2 | | 2+3x-5=4x-4 | | w9=6 | | (x²-3x-10)(x²-5x-6)=144 | | 17.92(x/60)=0 | | 625^4x+3=3125^3x | | 7(x-2)=5(x+10) | | 2x+55=7x+30 | | 20=1000*x | | 4(x+3)=2(x+12) | | 4/5x-x=x/15-16/3 | | 57=(x+3)+2x | | (x+2)+2=2(x+3)+1 | | 2+5*x-4-2x=x+6 | | -27+4w=-67 | | q4=2 | | -.16x=7 | | 79=s/9+72 | | -6=j/2-16 | | 110=100(1+x) | | 84=3(q-68) | | 10y-9=21 | | -3(a-5)+7=11-6(a+2) | | (2n+4)+6=–9+4(2n+1) | | 5/7m=3/4 | | 8r-5r+6=7r+6-r | | 2(y-66)=44 | | h/7-3=1 | | d+0.5=5.75 | | 2+5(x-4)-2x=x-6 |